segunda-feira, 29 de junho de 2009

sistema muscular

Introdução ao Sistema Muscular

Os músculos são órgãos constituídos principalmente por tecido muscular, especializado em contrair e realizar movimentos, geralmente em resposta a um estímulo nervoso.

Os músculos podem ser formados por três tipos básicos de tecido muscular:

Tecido Muscular Estriado Esquelético

Apresenta, sob observação microscópica, faixas alternadas transversais, claras e escuras. Essa estriação resulta do arranjo regular de microfilamentos formados pelas proteínas actina e miosina, responsáveis pela contração muscular. A célula muscular estriada chamada fibra muscular, possui inúmeros núcleos e pode atingir comprimentos que vão de 1mm a 60 cm.

Tecido Muscular Liso

Está presente em diversos órgãos internos (tubo digestivo, bexiga, útero etc) e também na parede dos vasos sanguíneos. As células musculares lisas são uninucleadas e os filamentos de actina e miosina se dispõem em hélice em seu interior, sem formar padrão estriado como o tecido muscular esquelético.

A contração dos músculos lisos é geralmente involuntária, ao contrário da contração dos músculos esqueléticos.

Tecido Muscular Estriado Cardíaco

Está presente no coração. Ao microscópio, apresenta estriação transversal. Suas células são uninucleadas e têm contração involuntária.

Sistema muscular - Tipos de tecidos musculares: Esquelético, Liso e Cardíaco.

Sarcômeros

As fibras musculares esqueléticas tem o citoplasma repleto de filamentos longitudinais muito finos, (as miofibrilas) constituídas por microfilamentos das proteínas actina e miosina. A disposição regular dessas proteínas ao longo da fibra produz o padrão de faixas claras e escuras alternadas, típicas do músculo estriado.

As unidades de actina e miosina que se repetem ao longo da miofibrila são chamadas sarcômeros. As faixas mais extremas do sarcômero, claras, são denominadas banda I e contém filamentos de actina. A faixa central mais escura é a banda A, as extremidades desta são formadas por filamentos de actina e miosina sobrepostos, enquanto sua região mediana mais clara, (a banda H), contém miosina.

Teoria do deslizamento dos filamentos

Quando o músculo se contrai, as bandas I e H diminuem de largura. A contração muscular se dá pelo deslizamento dos filamentos de actina sobre os de miosina. Essa idéia é conhecida como teoria do deslizamento dos filamentos.

Nas pontas dos filamentos de miosina existem pequenas projeções, capazes de formar ligações com certos sítios dos filamentos de actina quando o músculo é estimulado. As projeções da miosina puxam os filamentos de actina como dentes de uma engrenagem, forçando-os a deslizar sobre os filamentos de miosina, o que leva ao encurtamento das miofibrilas e à conseqüente contração da fibra muscular.

Interior de um músculo

Imagem do interior de um músculo.

Contração Muscular

O estímulo para a contração é geralmente um impulso nervoso que se propaga pela membrana das fibras musculares, atingindo o retículo sarcoplasmático (um conjunto de bolsas membranosas citoplasmáticas onde há cálcio armazenado), que libera íons de cálcio no citoplasma. Ao entrar em contato com as miofibrilas, o cálcio desbloqueia os sítios de ligação de actina, permitindo que se ligue a miosina, iniciando a contração muscular.

Assim que cessa o estímulo, o cálcio é rebombeado para o interior do retículo sarcoplasmático e cessa a contração muscular.

A energia para contração muscular é suprida por moléculas de ATP (produzidas durante a respiração celular). O ATP atua na ligação de miosina à actina, o que resulta na contração muscular. Mas a principal reserva de energia nas células musculares é a fosfocreatina, onde grupos de fosfatos, ricos em energia, são transferidos da fosfocreatina para o ADP, que se transforma em ATP. Quando o trabalho muscular é intenso, as células musculares repõem seus estoques de ATP e de fosfocreatina, intensificando a respiração celular, utilizando o glicogênio como combustível.

Tetania e Fadiga Muscular

A estimulação contínua faz com que o músculo atinja um grau máximo de contração, o músculo permanece contraído, condição conhecida como tetania. Uma tetania muito prolongada ocasiona a fadiga muscular. Um músculo fadigado, após se relaxar, perde por um certo tempo, a capacidade de se contrair. Pode ocorrer por deficiência de ATP, incapacidade de propagação do estímulo nervoso através da membrana celular ou acúmulo de ácido lático.

Antagonismo muscular

A movimentação de uma parte do corpo depende da ação de músculos que atuam antagonicamente. Por exemplo, a contração do músculo bíceps e o relaxamento do tríceps, provocam a flexão do membro superior.

Esque dos músculos.

Fibras musculares lentas e rápidas

As fibras musculares esqueléticas diferem quanto ao tempo que levam para se contrair, podendo levar um tempo de até 5 vezes maior do que as rápidas para se contrair.

As fibras musculares lentas estão adaptadas à realização de trabalho contínuo, possuem maior quantidade de mitocôndrias, maior irrigação sanguínea e grande quantidade de mioglobina, capaz de estocar gás oxigênio. As fibras rápidas, pobres em mioglobina, estão presentes em músculos adaptados à contrações rápidas e fortes.

Esses dois tipos de fibras podem ser diferenciados apenas ao microscópio por meio de corantes especiais.

Tônus muscular

Os músculos mantêm-se normalmente em um estado de contração parcial, o tônus muscular, que é causado pela estimulação nervosa, e é um processo inconsciente que mantém os músculos preparados para entrar em ação. Quando o nervo que estimula um músculo é cortado, este perde tônus e se torna flácido. Estados de tensão emocional podem aumentar o tônus muscular, causando a sensação física de tensão muscular. Nesta condição, gasta mais energia que o normal e isso causa a fadiga.

caracteristica do cistema digestorio

O tubo digestivo apresenta as seguintes regiões; boca, faringe, esôfago, estômago, intestino delgado, intestino grosso e ânus. A parede do tubo digestivo tem a mesma estrutura da boca ao ânus, sendo formada por quatro camadas: mucosa, submucosa, muscular e adventícia.

Os dentes e a língua preparam o alimento para a digestão, por meio da mastigação, os dentes reduzem os alimentos em pequenos pedaços, misturando-os à saliva, o que irá facilitar a futura ação das enzimas. A língua movimenta o alimento empurrando-o em direção a garganta, para que seja engolido. Na superfície da língua existem dezenas de papilas gustativas, cujas células sensoriais percebem os quatro sabores primários: doce, azedo, salgado e amargo.

A presença de alimento na boca, como sua visão e cheiro, estimula as glândulas salivares a secretar saliva, que contém a enzima amilase salivar ou ptialina, além de sais e outras substâncias.

Saliva e peristaltismo

A amilase salivar digere o amido e outros polissacarídeos (como o glicogênio), reduzindo-os em moléculas de maltose (dissacarídeo). O sais, na saliva, neutralizam substâncias ácidas e mantêm, na boca, um pH levemente ácido (6, 7), ideal para a ação da ptialina. O alimento, que se transforma em bolo alimentar, é empurrado pela língua para o fundo da faringe, sendo encaminhado para o esôfago, impulsionado pelas ondas peristálticas (como mostra a figura ao lado), levando entre 5 e 10 segundos para percorrer o esôfago. Através dos peristaltismo, você pode ficar de cabeça para baixo e, mesmo assim, seu alimento chegará ao intestino. Entra em ação um mecanismo para fechar a laringe, evitando que o alimento penetre nas vias respiratórias.

Quando a cárdia (anel muscular, esfíncter) se relaxa, permite a passagem do alimento para o interior do estômago.

Peristaltismo

Estômago e suco gástrico

No estômago, o alimento é misturado com a secreção estomacal, o suco gástrico (solução rica em ácido clorídrico e em enzimas (pepsina e renina).

A pepsina decompõem as proteínas em peptídeos pequenos. A renina, produzida em grande quantidade no estômago de recém-nascidos, separa o leite em frações líquidas e sólidas.

Apesar de estarem protegidas por uma densa camada de muco, as células da mucosa estomacal são continuamente lesadas e mortas pela ação do suco gástrico. Por isso, a mucosa está sempre sendo regenerada. Estima-se que nossa superfície estomacal seja totalmente reconstituída a cada três dias. O estômago produz cerca de três litros de suco gástrico por dia. O alimento pode permanecer no estômago por até quatro horas ou mais e se mistura ao suco gástrico auxiliado pelas contrações da musculatura estomacal. O bolo alimentar transforma-se em uma massa acidificada e semilíquida, o quimo.

Passando por um esfíncter muscular (o piloro), o quimo vai sendo, aos poucos, liberado no intestino delgado, onde ocorre a parte mais importante da digestão.

Percurso do alimento no sistema digestório.

Intestino delgado, suco pancreático e bile

O intestino delgado é dividido em três regiões: duodeno, jejuno e íleo. A digestão do quimo ocorre predominantemente no duodeno e nas primeiras porções do jejuno. No duodeno atua também o suco pancreático, produzido pelo pâncreas, que contêm diversas enzimas digestivas. Outra secreção que atua no duodeno é a bile, produzida no fígado, que apesar de não conter enzimas, tem a importante função, entre outras, de transformar gorduras em gotículas microscópicas.

Hormônios

Durante a digestão, ocorre a formação de certos hormônios. Veja na tabela abaixo, os principais hormônios relacionados à digestão:

funcionamento do sistema restema circulatório

Funcionamento do Sistema Circulatório

Em anatomia e fisiologia, o sistema circulatório é percorrido pelo sangue através das artérias, dos capilares e das veias. Este trajeto começa e termina no coração. O aparelho circulatório é responsável pelo fornecimento de oxigênio, substâncias nutritivas e hormônios aos tecidos; além disso, também exerce a função de transportar os produtos finais do metabolismo (excretas como CO2 e uréia) até os órgãos responsáveis por sua eliminação.

A circulação inicia-se no princípio da vida fetal. Calcula-se que uma porção determinada de sangue complete seu trajeto em um período aproximado de um minuto.

Vasos sanguíneos

Os vasos sanguíneos são tubos pelo qual o sangue circula. Há três tipos principais: as artérias, que levam sangue do coração ao corpo; as veias, que o reconduzem ao coração; e os capilares, que ligam artérias e veias. Num circulo completo, o sangue passa pelo coração duas vezes: primeiro rumo ao corpo; depois rumo aos pulmões.

Vasos Sanguíneos: Veia, Artéria, Capilar.

Coração (o centro funcional)

O aparelho circulatório é formado por um sistema fechado de vasos sanguíneos, cujo centro funcional é o coração. O coração bombeia sangue para todo o corpo através de uma rede de vasos. O sangue transporta oxigênio e substâncias essenciais para todos os tecidos e remove produtos residuais desses tecidos.

O coração é formado por quatro cavidades; as aurículas direita e esquerda e os ventrículos direito e esquerdo. O lado direito do coração bombeia sangue carente de oxigênio, procedente dos tecidos, para os pulmões, onde este é oxigenado. O lado esquerdo do coração recebe o sangue oxigenado dos pulmões, impulsionando-os, através das artérias, para todos os tecidos do organismo.

Circulação pulmonar

O sangue procedente de todo o organismo chega à aurícula direita através de duas veias principais; a veia cava superior e a veia cava inferior. Quando a aurícula direita se contrai, impulsiona o sangue através de um orifício até o ventrículo direito. A contração deste ventrículo conduz o sangue para os pulmões, onde é oxigenado. Depois, ele regressa ao coração na aurícula esquerda. Quando esta cavidade se contrai, o sangue passa para o ventrículo esquerdo e dali, para a aorta, graças à contração ventricular.

Sistema Circulatório

Esquema do sistema circulatório.

Ramificações

As artérias menores dividem-se em uma fina rede de vasos ainda menores, os chamados capilares. Deste modo, o sangue entra em contato estreito com os líquidos e os tecidos do organismo. Nos vasos capilares, o sangue desempenha três funções; libera o oxigênio para os tecidos, proporciona os nutrientes às células do organismo, e capta os produtos residuais dos tecidos. Depois, os capilares se unem para formar veias pequenas. Por sua vez, as veias se unem para formar veias maiores, até que por último, o sangue se reúne na veia cava superior e inferior e conflui para o coração, completando o circuito.

Circulação portal

A circulação portal é um sistema auxiliar do sistema nervoso. Um certo volume de sangue procedente do intestino é transportado para o fígado, onde ocorrem mudanças importantes no sangue, incorporando-o à circulação geral até a aurícula direita.